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Agenda 

•  Overview 
•  Models of networks 
•  Mixed membership blockmodels 

1.  Inference 
2.  Results 

•  Concluding remarks 



Overview 

•  Structured data vs. latent dependence structure 
Leveraging observed (noisy) structure for estimation 
As opposed to dim redux, graphical models, sparsity, … 

•  Technical challenges 
Abandon convenient representations of dependence 
Deal with structured measurements and interfering units  

•  This talk 
Statistical problems when structure is expressed by a graph 
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What is a complex network? 

•  Define as a collection of measurements on pairs of 
sampling units and of unit-specific attributes  

•  Traditionally, can only choose 2 out of 3 
1.  Large scale, e.g. millions of nodes 
2.  Realistic 
3.  Completely mapped, or to a large extent 

•  Today, a number of systems fall under this data 
setting that satisfy all three characteristics 
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A few examples 

•  Internet, WWW and Wikipedia 
•  Signaling pathways and metabolic networks 
•  JStor and scientific literature 
•  Cell-phone data, e.g. Rwanda, UK, ATT 
•  Yahoo and other instant messaging systems 
•  Linked-In and Facebook 
•  Blogs and Twitter 
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Rich, interdisciplinary literature 

•  Historical notes 
Moreno formalizes the sociogram (’34), Sociometry (‘37) 

50s: Sociology (Coleman et al. ‘57), Mathematics (Erdos 
& Reniy ‘59, Gilbert ‘59), Psychology (Milgram ‘67, ’69) 

70s: Statistics (Holland, Leinhardt, Fienberg, Wasserman) 

90s: Computer Science (Faloutsos3 ’99), Physics 
(Huberman & Adamic ‘99, Albert & Barabasi ‘99) 
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Statistical issues in network analysis 

•  Representation and compressed sensing 
How to smoothly represent the space of all graph structures? 
Motifs, metrics, spectral, …, semi-parametric 

•  Population models 
Sample size? Notions of variability? (See survey paper) 

•  Diffusion of information on a network 
How to infer who talks to whom from aggregate traffic? 
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Statistical issues in network analysis 

•  Confidence sets, tests, GoF, model selection 
How to establish confidence sets for network structure? 
The Newman-Girvan modularity score is inconsistent 

•  Inference from a sample 
CDC sponsored more than 90 studies to date using RDS 
Are network sampling designs ignorable? No. 

•  Causal inference with interference 
How to separate peer-influence effects from homophily? 
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Some details to think about 

•  Easy to measure things. Hard to pose questions. 
May not really know what any node or link means. 

•  What does Yij=0 mean?  

•  Valued measurements and censoring. 

•  Notion of variability. (sample size, populations) 

•  Global properties must be non-trivial outcomes of 
the composition of local properties and structures 
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Agenda 

•  Overview 
•  Models of networks 
•  Mixed membership blockmodels 

1.  Inference 
2.  Results 

•  Concluding remarks 



Network modeling 101 

•  Graphs or networks? 

•  Usually a graph is defined as, G = (V,E) 

•  For the purpose of this seminar, G = (1:N,YN✕N) 

•  Complex networks, G = (1:N,YN✕N,XN✕P) 

•  Random graphs via P(G|Θ) or P(Y|Θ) 

•  Frequentist or Bayes? 
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Erdös-Renyi-Gilbert 

•  The most widely known random graph model 

•  Binary edges are sampled independently 
 G(N,θ): sample Yij from Bernoulli(θ) for i,j=1..N 
 G(N,M): sample Y from SRS(θ,M) 

•  Likelihood for G(N,θ) 
 P(Y|Θ) = Πij θYij (1-θ)(1-Yij) 
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Emergence of the giant component 

•  ER studied G(N,M) as θ=M/    increases in [0,1] 

•  For a graph with N nodes, θ=1/N is a critical value 
1.  If θ<1/N, no connected components of size larger than 

O(log N) will exist in the graph, as N↑∞ 

2.  If θ=1/N, largest connected component of size O(N2/3) 
will exist in the graph, as N↑∞ 

3.  If θ>1/N, unique connected component of size O(N) 
will exist in the graph, as N↑∞. No other components 
with more than O(log N) will exist, as N↑∞ 
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p* or ERG models 

Pr (Y=y|Θ=θ) = exp{ Σk θkSk(y) + A(θ) } 

where Sk(y) counts specific structure k, such as 
•  edges  S1(y) = Σ1≤i≤j≤n yij 

•  triangles  S3(y) = Σ1≤i≤j≤h≤n yij yih yjh. 

Frank & Strauss (JASA, 1986), Snijders et al. (Soc. 
Met., 2004), Hanneke & Xing (LNCS, 2007) 
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Towards exchangeable graphs 

•  Symmetry suggests the nodes should be treated as 
exchangeable in the following sense 

 

•  A result by Hoover and Aldous: any model that 
satisfies this condition for any N is of the form 

 for ui,uj i.i.d. and εij i.i.d node/pair-specific effects 
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Exchangeable graph models 

•  Alternative specifications of h(µ,ui,uj,εij) lead to 
different models. With some generality 

 P(Yij=1|µ,ui,uj,εij) = h’(µ + α(ui,uj) + εij) = θij 

•  Likelihood 
 P(Y|c) = ∫Θ P(Θ|c) ⋅ Πij θij

Yij (1-θij)(1-Yij) dθij 
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Approach 

•  Issues: scalability, global vs. local perspectives 

Data 

Probabilistic 
Hierarchical 
Models 

Bayesian 
Posterior 
Inference Hidden Mechanism 

(Statistician) 

Domain Knowledge 
and Hypotheses 

(Domain expert) 



Three basic models 

•  Latent space model 
α(ui,uj) = -|ui-uj|; ui real vectors, for i=1…N 

•  Latent eigenmodel 
α(ui,uj) = ui

’Λuj; ui real vectors, for i=1…N; Λ diag. K×K 

•  Latent class model 
α(ui,uj) = Bui,uj; ui =1…K, for i=1…N;  B symm. K×K 
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Latent space models 

log-odds (Yij=1|ui,uj,µ) = µ – |ui–uj| = ηij 

where ui is a point in Rk,  for all nodes i in N. 

Idea: close points in Rk are likely to be connected. 

Here uis are constants; θij = [1+exp{–ηij}]-1 and 
likelihood is P(Y|U,µ) = Σij [ηijYij – log(1+exp{ηij}) ] 

Hoff et at. (JASA, 2002), Handcock et al. (JRSS/A, 2007), 
Krivitsky et al. (Soc. Net., 2009) 
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Shortcomings so far 

•  ERG models  (Wasserman et al., Handcock et al.) 

Summarize graphs using exp model on motif-counts 
Issues: cannot offer node-specific predictions, ..  

•  Latent space models  (Hoff et al. 02; Hoff 03) 

Project adjacency matrix onto a latent RK via logistic 
regression; closer points increase chance of connectivity 

Issues: MCMC does not scale, hard identifiability problem, 
no clustering effect 



Model specifications 

πi ~ Dirichlet (α), for all nodes i=1..N 
yij|πi,πj ~ Bernoulli (πi`B πj), for all pairs (i,j) 

where πi is a point in the K-simplex, and B is K×K. 

Nodes in the same block share similar connectivity. 

Loraine & White (JMS, 1971), Fienberg et al. (JASA, 1985), 
Nowicki & Snijders (JASA, 2001), Airoldi et al. (JMLR, 2008) 
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Agenda 

•  Overview 
•  Models of networks 
•  Mixed membership blockmodels 

1.  Inference 
2.  Results 
3.  Remarks 

•  Concluding remarks 



The cell 
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(Source: fig.cox.miami.edu) 



Functions & mechanisms 

•  Cytoplasm is a busy place 
Proteins, small molecules 

•  Taxonomy of functions 
Gene Ontology annotations 
(e.g., cell division) 

•  Mechanisms 
Pathways as complex graphs 
(e.g., carbon metabolism) 
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(Source: SGD and own work) 
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(Source: Nature, and BMC Bioinformatics) 

Domain knowledge 

Proteins form stable 
protein complexes to carry 
out functions in the cell 

Protein interaction data 
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Scientific questions 

•  Can interaction motifs: 
–  indicate proteins’ multifaceted functional role? 
–  reveal protein complexes and relations among them? 

Protein interaction data Functions (GO Slim) Yeast cell 

(Source: fig.cox.miami.edu, SGD, and own work) 



•  Structural equivalence (Lorrain & White, 1971) 
–  Nodes with similar connectivity collapsed into a block 

•  Instantiated by 
–  Blockmodel (B) 
(≈ Nowiki & Snijders, 01, 
Airoldi et al. 05, 07, 08) 

•  Combined with 
–  Mixed membership (Π) 
(Airoldi et al. 05, 07, 08) 
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Blockmodel, B 

•  Captures salient structure at the block level 

•  Connectivity among nodes within the same block 
(across blocks) is only specified on average 
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1.0 0 0.3 A 

0.3 1.0 0 B 
 

0 0.3 0 C 

C = (7,8,9) 

A = (1,2,3) B = (4,5,6) 

1 2 

3 

4 5 

6 

8 

9 
7 

From 

To 



Guest lecture for EE380L (November 2011) 30 

Mixed membership, Π 

•  Nodes can be mapped to multiple blocks 

•  Extends the idea of a mixture (i.e., local weights) 

•  Node-specific weights useful for prediction 

A B C node 
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Model: projecting Y onto B via Π 

Mixed 
Membership 

Stochastic 
Blockmodel 



Blockmodel + node-specific memberships 
 
 

Likelihood 
 

 
 

Note: the matrix B has size K✕K 
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Model: variant for prediction  

Y (n, m) ∼ Bernoulli (!π′

n
B !πm), (n, m) ∈ [1, N ]2

!πn ∼ Dirichlet (α), n ∈ [1, N ]

!(Y |α, B) =
∫
Π

∏
n

p(#πn|α)
∏

nm
p(Y (n, m)|#πn,#πm, B) dΠ
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Model: variant for de-noising 

Blockmodel + relation-specific memberships 
 
 

  
 

 
 

Note: the matrix B has size K✕K 

!πn ∼ Dirichlet (α), n ∈ [1, N ]

!znm→ ∼ multinomial (!πn, 1), (n, m) ∈ [1, N ]2

!znm↓ ∼ multinomial (!πm, 1), (n, m) ∈ [1, N ]2

Y (n, m) ∼ Bernoulli (!z′
nm→B !znm↓), (n, m) ∈ [1, N ]2
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Agenda 

•  Overview 
•  Models of networks 
•  Mixed membership blockmodels 

1.  Inference 
2.  Results 

•  Concluding remarks 
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Revisiting EM 

•  Data Y, latent variables X =(Π,Z), and constants Θ =(α,B) 

log 



q ≈ q∆(X) → p(X | Y ) at ∆∗ = ∆∗(Y )
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Variational EM 

•  EM maximizes the lower bound over (q,Θ) 
•  In EM we set 

•  If not feasible, we can posit approximation for q 
using free parameters Δ  ⎯  this is vEM  

q = p(X | Y,Θ)



Eq∆

[

log p(Y, X | Θ) − log q∆(X)
]

=: L(q∆, Θ)
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Variational EM (cont.) 

•  Leads to approximate lower bound 

•  Iterate 

  Variational E-step:   

  M-step: 

∆∗ = arg max∆ L(q∆, Θ)

Θ∗ = arg maxΘ L(q∆∗ , Θ)
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Nested variational EM 

•  Mean field: 

Vanilla vEM  (Jordan et al. 99) 
 
E-step: 
 initialize γ1:N, ϕ1:N,1:N 
 1. update ϕ1:N,1:N 
 2. update γ1:N 

M-step: 
 update α, B 

Nested vEM  (Airoldi et al. 05, 08) 

E-step: 
 initialize γ1:N 
 loop pairs (n,m) 
 1. init & optimize ϕn,m 
 2. partially update γ n,γm 

M-step: 
 update α, B 

q∆(Π, Z) =
∏

n q!γn
(!πn) ·

∏
nm q!φnm

(!znm)
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Agenda 

•  Overview 
•  Models of networks 
•  Mixed membership blockmodels 

1.  Inference 
2.  Results 

•  Concluding remarks 
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•  Functional content in P(Y |    ) 

•  Model reveals information about functional modules 
(cross-validation: K*=50; gold standard in Myers et al. 06) 

Evaluation: recovering function 

3

2

1

Pr
ec

is
io

n 

Recall 



41 

Evaluation: identifying blocks 

•  Two model variants capture a different number of 
functional processes, with equally high accuracy 

 

GO functional processes  (Area under the curve, red = high) 
 

2 
1 
3 
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Evaluation: mixed membership 

•  Amount of mixed membership is substantial 
•  Membership reveals multifaceted functional roles 

Mixed membership 

Estimated memberships 0 1 
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National study on adolescents 

•  A friendship network among 69 students in grades 7-12 

  Original data    node-specific  relation-specific 
     (prediction)     (de-noising) 



Columbia University, Nov. 26th, 2007, New York, NY Edo Airoldi 



Sampson’s monastery data 

•  Multivariate sociometric relations among novices 
in a NE monastery, over two years. 

•  Anthropological observations as ground truth 

•  Two factions, plus social outcasts and waverers 

•  After two years John and Greg get expelled, most 
young turks leave and the order dissolves 
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Expressing connectivity 

•  Two variants provide increasing levels of definition 

  Original data    node-specific  relation-specific 
     (prediction)     (de-noising) 



Social structure: blockmodel 

Young Turks 

Loyal 

Opposition 

Outcasts 

0.9 

0.9 0.5 

0.3 

0.4 
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Columbia University, Nov. 26th, 2007, New York, NY Edo Airoldi 

Social structure: membership 
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Evaluation: nested variational EM 

(Simulated data; 300 nodes, 10 blocks) 

— Vanilla 

— Nested 

Variational EM 

(Airoldi et al. 07) 

(Jordan et al. 99) H
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Model extensions 

•  Sparsity, general formulation, informative priors and 
full Bayes (Airoldi, Blei, Fienberg & Xing, 05, 06, 08) 

•  Node attributes (Airoldi, Markowetz, Blei & Troyanskaya) 

•  Dynamic (Airoldi, Fienberg & Krackhardt, 08) 

•  Extensions by others  (Hofman & Wiggins 07; Eliassi-Rad, 
Griffiths & Jordan; Nallapati, Cohen & Lafferty; Frey et al., 06,  
Chang & Blei) 
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Y 

Dynamics of social failure 

•  Analysis suggests a theory of social failure in 
isolated communities. Try longitudinal model 

•  Data: 

Y 
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Whom do like (epoch 1) Whom do like (epoch 2) 

Whom do like (epoch 3) 
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Agenda 

•  Overview 
•  Models of networks 
•  Mixed membership blockmodels 
•  Concluding remarks 



Take home points 

•  Complex networks are an exciting research area 
that is generating new statistical problems 

•  The familiar notions of sampling variability and 
sampling designs are challenged  

•  Potential for impact in the sciences, from biology 
to communications, and from computational social 
science to healthcare survey design and analysis 
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